登录 注册 退出 咨询电话:13805314440
首页 通告栏 国考 省考选调 事业单位 人才引进 军队文职 三支一扶 医疗卫生 教师招考 教师资格 招警 银行招考 国企招聘 社区工作
  • 招考信息
  • 历年试题
  • 考试攻略
  • 2023年上半年教师资格证考试《高中数学》题(考生回忆版)

    编辑: 发布时间:2025-09-17
    一、单项选择题。本大题共8小题,每小题5分,共40分。
    1

    已知g(x)在2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图1)可导,且g(1)=1,若2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图2)2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图3),则导数2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图4)的值是(  )。

    A、0
    B、1
    C、a
    D、2a
    2

    点x=0是函数2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图5)的(  )。

    A、连续点
    B、可去间断点
    C、跳跃间断点
    D、第二类间断点
    3

    2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图6),是n阶向量,2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图7)是内积,2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图8)是向量的模长,则(  )。

    A、2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图9)
    B、2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图10)
    C、2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图11)
    D、2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图12)
    4

    对于任意2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图13),若2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图14),则T是(  )。

    A、投影变换
    B、对称变换
    C、旋转变换
    D、正交变换
    5

    过点2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图15)的直线方程是(  )。

    A、2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图16)
    B、2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图17)
    C、2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图18)
    D、2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图19)
    6

    甲乙两人独立的对同一个目标进行射击,其命中率分别为0.4和0.5,则目标被命中的概率是(  )。

    A、0.6
    B、0.7
    C、0.8
    D、0.9
    7

    普通高中数学课程标准突出的四条内容主线是(  )。

    A、函数、几何与代数、概率与统计、数学建模活动与数学探究活动
    B、函数、图形与几何、概率与统计、数学建模活动与数学探究活动
    C、代数、图形与几何、概率与统计、数学建模活动与数学探究活动
    D、代数、函数、图形与几何、概率与统计
    8

    下面不适合作为指数函数模型教学的是(  )。

    A、种群增长问题
    B、放射物衰减问题
    C、复利问题
    D、自由落体问题
    二、简答题。本大题共5小题,每小题7分,共35分。
    9

    设h为常数,讨论2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图20),在空间直角坐标系中所表示的空间类型。

    10

    已知向量组2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图21)2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图22)2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图23)2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图24)

    (1)证明向量组2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图25)是三维空间的一组基;(4分)

    (2)求向量2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图26)在基底2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图25)下的坐标。(3分)

    11

    设二维随机变量(X,Y)服从***(n,m),2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图28)上的均匀分布,其中n,m都是整数。

    (1)求随机变量X的概率分布;(3分)

    (2)令Z=min{X,Y},求随机变量Z的概率分布。(4分)

    12

    简述长方体模型在学习直线与直线、直线与平面、平面与平面的平行和垂直位置关系中的作用。(答出两条即可)

    13

    数学教学中要注意知识的**和**性,请写出高中数学中“函数单调性”密切相关的具体知识。(答出5条即可)

    三、解答题。本大题共1小题,共10分。
    14

    证明:函数2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图29)2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图30)上一致连续。

    四、论述题。本大题共1小题,共15分。
    15

    写出对数的概念和3条运算性质,并结合对数的运算性质谈谈你对对数加法运算与乘法运算互相转化的认识。

    五、案例分析题。本大题共1题,共20分。
    (一)

    下面是某教师关于“建立直线的点斜式方程”的教学片段。

    教师:如图直线2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图31)经过点2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图32),且斜率为k,设P(x,y)是直线2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图31)上不同于2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图34)的任意一点,如何由2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图32),P(x,y)两点的坐标表示直线的方程?

    2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图36)

    学生甲:因为直线2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图31)经过点2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图32),P(x,y)两点,由过两点的直线斜率公式,得 2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图39),我认为这就是直线2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图31)的方程。

    ……

    教师:直线2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图31)上任意点的坐标(x,y)都满足关系式2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图42)吗?坐标满足关系式2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图42)的每一个点都在直线2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图31)上吗?

    学生乙:由前面的直线方程就可以看出:直线2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图31)上每一个点的坐标(x,y)都满足关系式2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图42);坐标满足关系式2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图42)的每一个点显然也都在直线2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图31)上。

    ……

    16

    问题:

    (1)学生甲的回答正确吗?为什么?

    (2)学生乙的回答不严谨,请说明理由并完善。

    六、教学设计题。本大题有1题,共30分。
    (二)

    高中数学课程要求“借助向量的运算,探索三角形边长与夹角的关系,掌握余弦定理”。

    某教材部分内容如下:

    1.余弦定理

    我们知道,边长和它们的夹角分别相等的两个三角形全等,这说明,给定出边及其夹角的三角形是唯一的。也就是说,三角形的其他边、角都可以用这两边及夹角来表示。那么、表示的公式是什么?

    探究

    因为涉及的是三角形的两边长和它们的夹角,所以我们考虑用向量的点乘积来探究。

    2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图49)

    如图6.4.8,设2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图50)2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图51)2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图52),那么2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图53)

    我们的正弦定理是用2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图54)和C表示2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图55),联想到向量数量积的性质2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图56),可以考虑用向量2023年上半年教师资格证考试《高中数学》题(考生回忆版)(图57)加减运算(即)与其自身做点乘运算。

    由①得

    …… 

    17

    完成下列任务:

    (1)根据上述材料,写出用向量方法证明余弦定理的过程;

    (2)设计“余弦定理”这节课的教学目标,并确定教学重点;

    (3)针对上述材料中“探究”的问题,设计3个课堂提问,引导学生从三角形的边角关系入手,逐步探索用向量方法证明余弦定理,并说明设计意图。

    加载中~